

Alexander Mushtukov V.F. Suleimanov, S.S. Tsygankov, V. Doroshenko, J. Poutanen, P. Verhagen, A. Ingram, M. van der Klis

17 June 2019 Tübingen

Ultraluminous X-ray Sources (ULXs)

- Off-center bright X-ray sources in nearby galaxies
- Discovered with Einstein X-ray observatory 30 years ago
- X-ray luminosity: L_x=10³⁹-10⁴¹ erg s⁻¹

Ultraluminous X-ray Sources (ULXs)

- **Off-center bright X-ray sources in nearby galaxies** -
- Discovered with Einstein X-ray observatory 30 years ago -

 σ_{T}

X-ray luminosity: L_x=10³⁹-10⁴¹ erg s⁻¹ _

 $L_{\rm Edd}$

Bachetti+ 2014, Nature

M82 ~10⁴⁰ erg s⁻¹ X-1

NGC 7793 ~5*10³⁹ erg s⁻¹

~2*10⁴¹ erg s⁻¹ NGC 5907 NGC 300 ~5*10³⁹ erg s⁻¹

Mass density

>10¹⁴ g cm⁻³

Mass: 1.5 M_{sun}

Radius: 10 km

The Highest Density in the Universe

of the EOS of superdense matter constitutes the main mystery of neutron stars.

Mean mass density:

 $\bar{\rho} \simeq 3M/(4\pi R^3) \simeq 7 \times 10^{14} \text{ g cm}^{-3} \sim (2-3) \rho_0$ Normal nuclear density

Normal nuclear density:

 $ho_0 = 2.8 \times 10^{14} \text{ g cm}^{-3}$

Mass-Radius relation for neutron stars

$$\dot{P}_{15} \equiv \dot{P}/(10^{-15}\,\mathrm{s\,s^{-1}})$$

$$B_s = \left(\frac{3Ic^3 P\dot{P}}{2\pi^2 R^6}\right)^{1/2} \simeq 2 \times 10^{12} \mathrm{G} \left(P\dot{P}_{15}\right)^{1/2}$$

What if neutron star has a companion?

Some neutron stars are isolated and dim

If neutron star has a close companion, it absorbs material and can be extremely bright.

Accretion Disc and its Interaction with B-field

The inner disc radius: $r_{\rm A} = \left(\frac{\mu^4}{2GM\dot{M}^2}\right)^{1/7}$ $r_{\rm m} = \xi r_{\rm A}$

Co-rotational radius:

$$r_{\rm co} = \left(\frac{GM}{\Omega^2}\right)^{1/3}$$

Keplerian and stellar-rotation frequencies are equal

Accretion state

r_m < **r**_{co} accretion is possible

Illarionov & Sunyaev, 1975

X-ray pulsars: pulse profiles

On the detection of pulsations in ULXs

Rodríguez Castillo+, 2019, arXiv:1906.04791

	Strongest field		
Earth	Stars	in_lab	
1	10 ³	106	G

63	64	65	66	67	68	69	70	71
Fx	Bb	Pi	Lj	Au	Cv	Х	Мо	It
FIRT X V9	FERRAR	FERRAR	LANICORNIN JALPA	RERAR TESTAROSSA	FERBAR 1355	FERRAR FSO	FERRAR 360	FERRE 458

°5 Cc	° ⁶ Pz	97 G	°°Ct	" Ua	Bs	Fu	¹⁰² Wm	103 N
KOEN CSESS CC	PRGAIN ZONDA	GUMPERT APOLLO	CALMARD	ULTIMA GTR	MAXED MUS GHORE L	SSC ULTMATE ALRO	MICSLER M7900	SILLIN ST

Extreme physics

Deviations from Quantum Electrodynamics?

Compton scattering: non-magnetic case

Compton scattering: non-magnetic case

Strong magnetic fields

$$B_{\rm cr} = m_{\rm e}^2 c^3 / e\hbar = 4.412 \times 10^{13} \ {\rm G}$$

Elementary processes can have another behavior in comparison with a case when B-field is weak or absent. Even particles should be described in the another way:

•Electrons occupy Landau levels:

Compton scattering in a strong magnetic field

Typical spectra

Typical spectra

Source name	Cyclotron energy, keV
4U 0115+63 (-)	11.5, 20.1, 33.6, 49.5, 53
V 0332+53 (-)	28, 53, 74
4U 0352+309 (X Per)	29
RX J0440.9+4431	32
RX J0520.5-6932	31.5
A 0535+262	50, 110
MXB 0656-072	36
Vela X-1 (+)	27,54
GRO J1008-57	88 [?] , 75.5
1A 1118–61	55
Cen X-3	28
GX 301–2	37, 48
GX 304–1 (+)	50.8
4U 1538–52	20, 47
Swift J1626.6–5156	10
4U 1626–67	37
Her X-1 (+)	42
OAO 1657-415	36
GRO J1744–28	4.7
IGR J18179–1621	21
GS 1843+00	20
4U 1907+09	19, 40
4U 1909+07	44 [?]
XTE J1946+274	36
KS 1947+300	12.5
EXO 2030+375	$11^{?}, 36^{?}, 63^{?}$
Сер Х-4	30

Typical spectra

Source name	Cyclotron energy, keV
4U 0115+63 (-)	11.5, 20.1, 33.6, 49.5, 53
V 0332+53 (-)	28, 53, 74
4U 0352+309 (X Per)	29
RX J0440.9+4431	32
RX J0520.5-6932	31.5
A 0535+262	50, 110
MXB 0656–072	36
Vela X-1 (+)	27,54
GRO J1008-57	88 [?] , 75.5
1A 1118–61	55
Cen X-3	28
GX 301–2	37, 48
GX 304–1 (+)	50.8
4U 1538–52	20, 47
Swift J1626.6–5156	10
4U 1626–67	37
Her X-1 (+)	42
OAO 1657-415	36
GRO J1744–28	4.7
IGR J18179–1621	21
GS 1843+00	20
4U 1907+09	19, 40
4U 1909+07	44 [?]
XTE J1946+274	36
KS 1947+300	12.5
EXO 2030+375	$11^{?}, 36^{?}, 63^{?}$
Сер Х-4	30

Critical luminosity

Above the critical luminosity: accretion column

Crude analytical estimation:

$$L(H=R) \approx 1.8 \times 10^{39} \left(\frac{l_0/d_0}{50}\right) \left(\frac{\kappa_{\rm T}}{\kappa_{\perp}}\right) \frac{M}{\rm M_{\odot}} \rm erg\,s^{-1}$$

Stable accretion columns cannot be infinitely bright

Pulsations from ULX in M82: explanation

M82 as seen by Chandra

M82 X-2 intensity distribution

Accretion column: radiation beaming

Accretion column: radiation beaming

Accretion column: radiation beaming

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

$$\frac{\partial}{\partial h} \left[\left(-\frac{\rho GM}{R+h} + \frac{\rho v^2}{2} + \varepsilon_{\rm tot} + P_{\rm tot} + 2n_+ m_{\rm e} c^2 \right) v \right] = Q^-$$

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

$$\frac{\partial}{\partial h} \left[\left(-\frac{\rho GM}{R+h} + \frac{\rho v^2}{2} + \varepsilon_{\rm tot} + P_{\rm tot} + 2n_+ m_{\rm e} c^2 \right) v \right] = Q^-$$

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

$$\frac{\partial}{\partial h} \left[\left(-\frac{\rho GM}{R+h} + \frac{\rho v^2}{2} + \varepsilon_{\rm tot} + P_{\rm tot} + 2n_+ m_{\rm e} c^2 \right) v \right] = Q^-$$

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

Outflows from accretion discs in ULX pulsars

 $\nu F_{\nu} \,\,({\rm erg\,cm^{-1}\,s^{-1}})$

Some consequences:

- we hardly see the central NS directlyspectrum affected by Comptonization by the
- envelope
- smooth pulse profiles
- suppressed aperiodic variability at high Fourier frequencies
- super-orbital variability because of precession of magnetic dipole

Short Summary

- (1) Accretion columns are the central engines in ULXs; their luminosity is strongly affected by geometry;
- (2) The column becomes advective at extreme mass accretion rates; advective columns can produce strong neutrino emission;

- (3) Bright ULXPs are surrounded by optically thick envelopes. The envelopes determine the observational manifestation of ULX pulsars;
- (4) **Strong outflow** from the accretion disc in ULX pulsars is possible in the case of relatively weak dipole component of magnetic field

But

many and many details remain unclear and/or debated.

- (1) magnetic field strength
- (2) evolutionary status of ULX pulsars
- (3) fraction of NS among ULXs
- (4) fate of a companion star
- (5) ...

