Extreme Accretion onto Strongly Magnetized Neutron Stars

Alexander Mushtukov

12 April 2021

E

R

到

EE

Ultraluminous X-ray Sources (ULXs)

- Off-center bright X-ray sources in nearby galaxies
- Discovered with Einstein X-ray observatory 30 years ago
- X-ray luminosity: L_x=10³⁹-10⁴¹ erg s⁻¹

Bachetti+ 2014, Nature

~2*10⁴¹ erg s⁻¹ NGC 5907

X-2

M82 ~10⁴⁰ erg s⁻¹ X-1

NGC 7793 ~5*10³⁹ erg s⁻¹

NGC 300 ~5*10³⁹ erg s⁻¹

ULX-pulsars in a nutshell

name	M82 ULX2	NGC 7793 P13	NGC5907 ULX1	NGC300 ULX1
$L_X(\max) [\text{erg s}^{-1}]$	1.8×10^{40}	5×10^{39}	10 ⁴¹	4.7×10^{39}
P_s [s]	1.37	0.42	1.13	31.5
$\dot{ u}$ [s ⁻²]	10^{-10}	4×10^{-11}	$4. imes 10^{-9}$	$5.6 imes10^{-10}$
P_{orb} [d]	2.52	64	5.3	
$M_2 [{ m M}_\odot]$	≥ 5.2	18 - 23		

- Large pulsed fraction, 20-30%, in all objects
- Smooth pulse profiles
- Huge variations in luminosity
- Multi-colour blackbody spectrum
- No (or very week?) cyclotron lines

Bachetti+ 2014, Nature, 514 Israel+, 2017, Science, 355 Israel+, 2017, MNRAS, 466 Fürst+, 2016, ApJ, 831 Carpano+, 2018, MNRAS, 476

Neutron Stars

Product of supernova explosions

Mass density

The Highest Density in the Universe

 B_s

-9

-10

-11

-12

-13

-14

-15

1015

105 11

107 11

2

1014

1₀₁₃

Bo = 1012 G

What if neutron star has a companion?

Some neutron stars are isolated and dim

If neutron star has a close companion, it absorbs material and can be extremely bright.

What if neutron star has a companion?

Accretion Disc and its Interaction with B-field

The inner disc radius: $r_{\rm A} = \left(\frac{\mu^4}{2GM\dot{M}^2}\right)^{1/7}$ $r_{\rm m} = \xi r_{\rm A}$

Co-rotational radius:

$$r_{\rm co} = \left(\frac{GM}{\Omega^2}\right)^{1/3}$$

Keplerian and stellar-rotation frequencies are equal

r_m < **r**_{co} accretion is possible

Illarionov & Sunyaev, 1975

"Propeller" effect

Detection

Propeller luminosity:

 $L_{\rm prop} \approx 3.5 \times 10^{36} B_{12}^2 P^{-7/3} M_{1.4}^{-2/3} R_6^5 \ {\rm erg \ s^{-1}}$

"Propeller" effect

Detection

Propeller luminosity:

 $L_{\rm prop} \approx 3.5 \times 10^{36} B_{12}^2 P^{-7/3} M_{1.4}^{-2/3} R_6^5 \ {\rm erg \ s^{-1}}$

"Propeller" effect

Detection

Propeller luminosity:

 $L_{\rm prop} \approx 3.5 \times 10^{36} B_{12}^2 P^{-7/3} M_{1.4}^{-2/3} R_6^5 \ {\rm erg \ s^{-1}}$

X-ray pulsars: pulse profiles

Krivonos+, 2012, A&A, 545

	S	trongest field	
Earth	Stars	in lab	
•		•	
1	103	106	G
—	μV	A V	

63	64	65	66	67	68	69	70	71
Fx	Bb	Pi	Lj	Au	Cv	Х	Мо	It
Fall 11/9	FERRAR	FERRAR 308	LANIORCHIN JALPA	FERRAR TESTAROSSA	FERBLE F355	FERRAR FSD	FERRAR 360	FER88

°5 Cc	° ⁶ Pz	97 G	°°Ct	" Ua	Bs	Fu	¹⁰² Wm	103 N
KOEN CSESS CC	PRGAIN ZONDA	GUMPERT APOLLO	CALMARD	ULTIMA GTR	MAXED MUS GHORE L	SSC ULTMATE ALRO	MICSLER M7900	SILLIN ST

Extreme physics Deviations from Quantum

Electrodynamics?

Compton scattering: non-magnetic case

Compton scattering: non-magnetic case

Typical spectra

AM+, 2016, Ph.Rev.D

Typical spectra

Source name	Cyclotron energy, keV
4U 0115+63 (-)	11.5, 20.1, 33.6, 49.5, 53
V 0332+53 (-)	28, 53, 74
4U 0352+309 (X Per)	29
RX J0440.9+4431	32
RX J0520.5-6932	31.5
A 0535+262	50, 110
MXB 0656–072	36
Vela X-1 (+)	27,54
GRO J1008-57	88 [?] , 75.5
1A 1118–61	55
Cen X-3	28
GX 301–2	37, 48
GX 304–1 (+)	50.8
4U 1538–52	20, 47
Swift J1626.6-5156	10
4U 1626–67	37
Her X-1 (+)	42
OAO 1657-415	36
GRO J1744–28	4.7
IGR J18179–1621	21
GS 1843+00	20
4U 1907+09	19, 40
4U 1909+07	44 [?]
XTE J1946+274	36
KS 1947+300	12.5
EXO 2030+375	$11^{?}, 36^{?}, 63^{?}$
Cep X-4	30

Typical spectra

Source name	Cyclotron energy, keV
4U 0115+63 (-)	11.5, 20.1, 33.6, 49.5, 53
V 0332+53 (-)	28, 53, 74
4U 0352+309 (X Per)	29
RX J0440.9+4431	32
RX J0520.5-6932	31.5
A 0535+262	50, 110
MXB 0656–072	36
Vela X-1 (+)	27,54
GRO J1008-57	88 [?] , 75.5
1A 1118–61	55
Cen X-3	28
GX 301–2	37, 48
GX 304–1 (+)	50.8
4U 1538–52	20, 47
Swift J1626.6-5156	10
4U 1626–67	37
Her X-1 (+)	42
OAO 1657-415	36
GRO J1744–28	4.7
IGR J18179–1621	21
GS 1843+00	20
4U 1907+09	19, 40
4U 1909+07	44 [?]
XTE J1946+274	36
KS 1947+300	12.5
EXO 2030+375	$11^{?}, 36^{?}, 63^{?}$
Cep X-4	30

AM+, 2015, MNRAS, 447

Critical luminosity

Critical luminosity

AM+, 2015, MNRAS, 447

Above the critical luminosity: accretion column

A set of assumptions:

(1) dipole magnetic field;(2) geometrical thickness is determined by the thickness of accretion disc at the magnetospheric radius;

(3) accretion flow stops at radiation dominated shock and slowly settles in inside a sinking region

(4) the gravitational force will be offset by the radiation pressure gradient

(5) the gas pressure is unimportant

x

h

 Δh

H

d/2

Pulsations from ULX in M82: explanation

M82 as seen by Chandra

Tsygankov, AM+, 2016, MNRAS, 457

M82 X-2 intensity distribution

Tsygankov, AM+, 2016, MNRAS, 457

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

$$\frac{\partial}{\partial h} \left[\left(-\frac{\rho GM}{R+h} + \frac{\rho v^2}{2} + \varepsilon_{\rm tot} + P_{\rm tot} + 2n_+ m_{\rm e} c^2 \right) v \right] = Q^-$$

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

$$\frac{\partial}{\partial h} \left[\left(-\frac{\rho GM}{R+h} + \frac{\rho v^2}{2} + \varepsilon_{\rm tot} + P_{\rm tot} + 2n_+ m_{\rm e} c^2 \right) v \right] = Q^-$$

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

$$\frac{\partial}{\partial h} \left[\left(-\frac{\rho GM}{R+h} + \frac{\rho v^2}{2} + \varepsilon_{\rm tot} + P_{\rm tot} + 2n_+ m_{\rm e} c^2 \right) v \right] = Q^-$$

$$t_{\rm diff} = \frac{\tau d}{2c} \approx 5 \times 10^{-4} \, \frac{\dot{m}_{10} d_4^2 \kappa_{\rm e}}{\beta} \, \rm s$$

AM+, 2018, MNRAS, 476

Accretion column: Photon and Neutrino Luminosity

AM+, 2018, MNRAS, 476

Outflows from accretion discs in ULX pulsars

AM+, 2017, MNRAS, 467 AM+, 2019, MNRAS, 484

Geometrical Beaming vs. Pulsed Fraction

We know **5 pulsating ULXs**. But, there are only ~**15 ULXs** out of ~**300** provide the statistics sufficient for detection of pulsations. (see, e.g., Rodrigues Castillo+, 2020, ApJ, 895)

High Pulsed Fraction (~10 percents and more) is a typical feature of ULX pulsars.

AM+, 2021, MNRAS, 501

Geometrical Beaming vs. Pulsed Fraction

Distribution of ULX pulsars over the PF and Luminosity Amplification Factor

Distribution of ULX pulsars over the PF and Luminosity Amplification Factor

Distribution of ULX pulsars over the PF and Luminosity Amplification Factor

AM+, 2021, MNRAS, 501

AM+, 2017, MNRAS, 467 AM+, 2019, MNRAS, 484

(1) we do not see directly the central NS in ULX pulsars;

(2) smooth pulse profiles and hardly detected cyclotron lines;

(3) the energy spectra of ULXPs are affected by multiple scatterings in the envelope;

(4) suppressed **power spectra** at high Fourier frequency;

(5) super-orbital variability because of precession of magnetic dipole.

Short Summary

- (1) Accretion columns are the central engines in ULXs; their luminosity is strongly affected by geometry of accretion channel;
- (2) The column becomes advective at extreme mass accretion rates; advective columns can produce strong neutrino emission;

- (3) Bright ULX pulsars are surrounded by optically thick envelopes. The envelopes determine the observational manifestation of ULX pulsars;
- (4) **Strong outflow** from the accretion disc in ULX pulsars is possible in the case of relatively weak dipole component of magnetic field

But

many and many details remain unclear and/or debated.

- (1) magnetic field strength
- (2) evolutionary status of ULX pulsars
- (3) fraction of NS among ULXs
- (4) fate of a companion star
- (5) ...

